Metal Matrix Composite Feedstock for Advanced Fiber Placement Process, Phase I



Completed Technology Project (2013 - 2013)

Project Introduction

The proposed research pursues a path for reducing structural weight, increasing structural performance, and reducing fabrication cost while also minimizing maintainability. The approach, which is a based on selective reinforcement, is a change in the basic design philosophy and will result in the development of a hybrid material form. The selective reinforcement approach allows the structural design requirements to define the material form. This is the reverse of the typical development flow path used for building structures. This backward path results in more efficient material forms that are of greater value to structural engineers. Specifically, the proposed effort will combine a metal matrix composite (MMC) prepreg tape feedstock with an advanced fiber placement process. The combination of these technologies will lead to enhanced metallic structures through selective reinforcement (SR), which consists of adding a high-performance material to structures to achieve local stiffening and strengthening.

Primary U.S. Work Locations and Key Partners

Metal Matrix Composite Feedstock for Advanced Fiber Placement Process

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Metal Matrix Composite Feedstock for Advanced Fiber Placement Process, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Touchstone Research	Lead	Industry	Triadelphia,
Laboratory, Ltd.	Organization		West Virginia
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Primary U.S. Work Locations		
Virginia	West Virginia	

Project Transitions

0

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138296)

Images

Project ImageMetal Matrix Composite Feedstock for Advanced Fiber Placement Process (https://techport.nasa.gov/image/135192)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Touchstone Research Laboratory, Ltd.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Brian L Gordon

Co-Investigator:

Brian S Gordon

Small Business Innovation Research/Small Business Tech Transfer

Metal Matrix Composite Feedstock for Advanced Fiber Placement Process, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - ☐ TX12.1.1 Lightweight
 Structural Materials

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

